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Autoimmune diseases, chronic in nature, are generally hard to alleviate. Present long-term treatments with available drugs such as
steroids, immune-suppressive drugs, or antibodies have several debilitating side effects. Therefore, new treatment options are
urgently needed. Stem cells, in general, have the potential to reduce immune-mediated damage through immunomodulation
and T cell regulation (T regs) by inhibiting the proliferation of dendritic cells and T and B cells and reducing inflammation
through the generation of immunosuppressive biomolecules like interleukin 10 (IL-10), transforming growth factor-β (TGF-β),
nitric oxide (NO), indoleamine 2,3-dioxygenase (IDO), and prostaglandin E2 (PGE2). Many stem cell-based therapeutics have
been evaluated in the clinic, but the overall clinical outcomes in terms of efficacy and the longevity of therapeutic benefits seem
to be variable and inconsistent with the postulated benefits. This emphasizes a greater need for building robust preclinical
models and models that can better predict the clinical translation of stem cell-based therapeutics. Stem cell therapy based on
MSCs having the definitive potential to regulate the immune system and control inflammation is emerging as a promising tool
for the treatment of autoimmune disorders while promoting tissue regeneration. MSCs, derived from bone marrow, umbilical
cord, and adipose tissue, have been shown to be highly immunomodulatory and anti-inflammatory and shown to enhance
tissue repair and regeneration in preclinical models as well as in clinical settings. In this article, a review on the status of MSC-
based preclinical disease models with emphasis on understanding disease mechanisms in chronic inflammatory disorders
caused by exaggerated host immune response in rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) was
carried out. We also emphasized various factors that better predict the translation of stem cell therapeutic outcomes from
preclinical disease models to human patients.

1. Introduction

Stem cell transplantation is an emerging alternate treatment
option for chronic autoimmune disorders. There are dozens
of clinically observed autoimmune diseases that affect nearly
5% of the global population [1, 2]. Autoimmune disorders
could be systemic or organ-specific. These diseases are
caused by “the host immune system attacking itself.” The
nature and severity of these disorders depend on the com-
plexity of the immune system and the type of immune
response (innate, humoral, or cellular) involved. Major fac-

tors underlying autoimmune diseases are environment, life-
style, genetic disposition, exaggerated immune reactivity,
and inflammation and hormones in some cases [3–6]. Auto-
immune diseases are typically chronic illnesses, which are
difficult to ameliorate and treat. Maintaining a delicate
balance between effector and regulatory immune function
is required for avoiding autoimmune disorders [5–8]. There
are approximately 80 autoimmune diseases known to scien-
tists of which rheumatoid arthritis (RA), systemic lupus
erythematosus (SLE), multiple sclerosis (MS), inflammatory
bowel syndrome (IBS), Crohn’s disease (CD), and type 1

Hindawi
Stem Cells International
Volume 2022, Article ID 6379161, 8 pages
https://doi.org/10.1155/2022/6379161

https://orcid.org/0000-0002-0908-1340
https://orcid.org/0000-0002-7781-7399
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6379161


diabetes are well studied both in preclinical models and
clinical studies [1, 3, 4, 9, 10].

MSCs are nonhematopoietic, multipotent cells and can
differentiate into many cell types, including adipocytes,
neuronal cells, and osteoclasts [9, 11, 12]. MSCs can be
derived from human bone marrow, adipose tissue, umbilical
cord, and dental pulp and can be cultured and expanded to
large numbers in vitro to meet the large-scale need for clin-
ical trials and therapy [7, 8, 11, 13–19]. MSCs can home into
the injured and inflamed area/capillary beds, where they can
sense and communicate with the local cell milieu, collect
local data signals, and then intelligently release drug-like
substances/growth factors that heal different organs like
the liver, lung, bones, knee, and diabetic foot [12, 19, 20].
MSCs have immense immunomodulatory and regenerative
capacity, which enables tissue and organ repair and regener-
ation, a feature distinct from conventional therapeutics.
Hence, MSCs have been successfully used to treat inflamma-
tion, autoimmune diseases like arthritis and systemic lupus
erythematosus, Crohn disease, diabetes, irritable bowel
syndrome, the heart, spine injuries, and other organs by
transplantation and even infections [11, 12, 19, 21–24].

Conventional therapies for autoimmune diseases have
relied on globally dampening the immune responses and
arresting the inflammation cycle by using immunosuppres-
sive medications such as steroids, methotrexate, tacrolimus,
and antibodies like infliximab and anti-TNF-α (Humira) to
nonspecifically reduce antibody production or using
prostaglandin-cyclo-oxygenase pathway inhibitors [13, 25].
These therapies remain the current standard of care (SOC)
and are efficacious in most patients. The caveat is the need
for high doses required for longer periods, leaving the
patient susceptible to life-threatening opportunistic infec-
tions such as tuberculosis in RA patients treated with
TNF-α antibodies and long-term risk of malignancy [25].
However, many of the treatment modalities currently being
investigated lack specificity [13, 25]. While these treatment
regimens mitigate the symptoms to a good extent, many
benefits are counter balanced by associated toxicity and
potentially serious side effects [26, 27]. Thus, developing
more target-specific treatment options with reduced risk of
systemic immune suppression and reduced toxicity and side
effects is the need of the hour [25, 26].

The immunomodulatory properties of MSCs allow
downregulation of chronic inflammatory processes. MSCs
have been widely studied for immunomodulatory effects
using bone marrow, umbilical cord, and adipose tissues to
regulate the immune system in experimental models [13,
28–30] and human clinical studies [22–24, 31, 32]. Human
clinical trial data show that MSC treatments are well toler-
ated. Kabat et al. [10] in a comprehensive review
summarised results from 914 clinical trials using MSCs,
distributed over 14 diseases, including autoimmune diseases.
Bone marrow-derived MSCs were most commonly used,
and an almost equal number of trials used autologous and
allogeneic MSCs, and the median effective dose (MED)
suggested was 100 million MSCs/human dose [10]. There
are dozens of current ongoing trials reported at http://www
.clinicaltrials.gov., encouraging MSC therapeutic develop-

ment, including for autoimmune diseases. Various studies
have demonstrated that adult MSCs can affect the immune
T and B cell response by inhibiting the functions of dendritic
cells, B cells, and T cells but enhancing the functions of reg-
ulatory T cells (T regs) by producing immunoregulatory
molecules, thus making them good therapeutic candidates
for autoimmune disease treatment [7, 13, 29, 31, 33, 34].
Hence, in this review, we highlight the therapeutic poten-
tial of MSC by evaluating their immunomodulatory poten-
tial in animal models of rheumatoid arthritis (RA) and
systemic lupus erythematosus (SLE) and summarise the
underlying immunomodulatory mechanisms specific to
these diseases. In addition, the review will also highlight
the recent progress made in the clinical translation of
MSCs for autoimmune diseases.

2. Preclinical Animal Models of
Autoimmune Diseases

2.1. Rheumatoid Arthritis. Rheumatoid arthritis (RA) is a
common chronic autoimmune disease that affects joints
and connective tissues leading to chronic joint inflamma-
tion, stiffness, pain, and loss of mobility. It is often associated
with vascular, metabolic, bone, and psychological comorbid-
ities. Progression of RA is characterized by dysfunction of
innate and adaptive immunity, including dysregulated
cytokine networks which result in an inflammatory milieu
progressively damaging the joint and surrounding tissues
[35–37]. Current treatment options are limited, and some
patients do not respond well in terms of efficacy, while others
may experience detrimental side effects [38]. The most widely
used treatment for RA includes corticosteroids [31], nonste-
roidal [39] anti-inflammatory drugs (NSAIDs), nonbiologic
[40] disease-modifying antirheumatic drugs (DMARDs), and
biologic DMARDs [41, 42] like anti-TNF-α monoclonal anti-
bodies [42], which are aimed at reducing the symptoms and
gradually alleviating the disease pathogenesis.

Since the pathogenesis and clinical presentation of RA
are diverse, a significant effort has been made in understand-
ing its aetiology [43, 44], underlying mechanisms, and
inflammatory [44, 45] and immunoregulatory pathways
[33, 34, 46] to facilitate the development of newer and better
therapies [46, 47].

There are nearly one hundred studies published on the
development and validation of preclinical disease models
of RA, which exhibit promising trends for the clinical appli-
cation of MSC-based therapeutics. MSC-based studies have
demonstrated a reduction of arthritis progression in the
majority of preclinical models. Thus, MSC-based therapy
may provide relief to patients not responding well to stan-
dard of care (SOC) drug-based treatments.

The collagen-induced arthritis model (CIA) in DBA/1
mice and BB, Brown-Norway rats is well validated for study-
ing disease resolution with drugs and MSCs [28, 32, 33,
45–49]. Stem cells injected intravenously or parenterally
specifically home into the inflamed arthritic tissues and con-
comitantly reduce pathogenic cytokines and disease severity
scores [8]. The CIA shares many similarities with RA, such
as the involvement of Th1 and Th17 cells in disease
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progression and the presence of autoantibodies; thus, it best
represents the systemic immune responses in human RA
[46]. Augello et al. injected allogeneic bone-marrow MSCs
(BM-MSCs) in DBA/1 mice intraperitoneally (IP). A single
injection of these cells significantly reduced inflammatory
cytokines, antigen-specific regulatory T cells (Tregs), and
disease severity [48].

Similarly, Liu and his colleagues evaluated a single
intravenous infusion of human umbilical cord MSCs
(hUC-MSCs) on CIA in DBA/1 mice. They again reported
an association between decreased proinflammatory cyto-
kines and alleviation of RA symptoms [38]. Liu et al. also
demonstrated the therapeutic potential of hUC-MSCs on
CIA in DBA/1 mice and showed that upon injecting the cells
through IP, a reduction in the severity of arthritis was
observed with reduced levels of proinflammatory cytokines
and chemokines (TNF-α, IL-6, and monocyte chemoattrac-
tant protein-1 (MCP1)), induction of Tregs, and increased
levels of IL-10 [49]. Similar results were observed when
Zhou et al. intravenously (IV) injected human adipose-
derived mesenchymal stem cells (hA-MSCs) in a mouse
model of CIA. The production of various inflammatory
mediators was inhibited upon treatment with hA-MSCs,
along with decreased antigen-specific Th1/Th17 cell expan-
sion. Induction in the production of anti-inflammatory cyto-
kine interleukin-10 was also observed.

Moreover, hA-MSCs could induce the generation of
antigen-specific Treg cells with the capacity to suppress
collagen-specific T cell responses [50]. A robust meta-
analysis study [51] that evaluated the utility of MSC thera-
peutics in preclinical RA models (variables like donor
species, tissue of origin, route of administration, and type
of transplant—autologous, allogeneic, and xenogeneic) from
1995 to 2019 concluded that MSC therapeutics are good can-
didates because of their ability to attenuate exacerbated patho-
genic immune response in RA and restore the balance between
dysregulated proinflammatory and anti-inflammatory cell
populations. They postulated that the efficacy of MSC-based
therapeutics and amelioration of RA pathogenesis in experi-
mental models could translate to RA in humans [51].

Alternatively, many investigators have employed
adjuvant-induced arthritis (AIA) and spontaneous (K/
BxN) arthritis models instead of CIA. In an AIA model,
MSCs are injected directly into inflamed joints to reduce
inflammation [52, 53]. Many studies postulated that higher
efficacy with MSCs can be achieved with the infusion of stem
cells before disease onset or during the early phase of the
disease. Recently, Sampath et al. [54] reported a novel
therapeutic combination of placental-derived MSCs
(hPMSCs) with stigmasterol, a plant-derived sterol in the
monosodium-iodoacetate osteoarthritis (OA) rat model.
The authors found beneficial effects on intra-articular
administration of hPMSCs with stigmasterol and demon-
strated accelerated cartilage repair and regeneration using
computerised tomography (micro-CT) and histopathology.
This cellular therapy attenuated osteoarthritis lesions with
concomitant cartilage repair and regeneration [54].

Numerous studies have been carried out to understand
how MSCs decrease proinflammatory cytokines such as

TNF-α [55, 56] or IL-6 and increase the anti-inflammatory
cytokine IL-10, IFN-γ-induced protein 10 (IP-10), and/or che-
mokine receptor 3-alternative (CXCR3) anti-inflammatory
cytokine levels in serum and synovium. The precise mechanis-
tic network through which RA is inhibited by MSCs is still
being evaluated and emerging. Recently, MSC-derived extra-
cellular vesicles (EVs)/exosomes have emerged as key para-
crine messengers that can exert a strong immunomodulatory
and therapeutic effect on preclinical models of RA [57].

Though there are convincing preclinical studies on the
therapeutic benefits of MSCs in RA, their translation into
human RA treatment is an ongoing debate [10, 22]. At pres-
ent, there is no so-called ideal protocol for MSC-based ther-
apy for RA treatment in human patients [10]. A few clinical
studies are available in the public domain (http://www
.clinicaltrials.gov.) that evaluate the safety and efficacy of
MSC-based therapy in RA, and some are still ongoing [10,
58–61]. So far, these proof-of-concept clinical translation
studies have demonstrated promising results in terms of
pathology resolution, safety, and efficacy with no to limited
adverse events in patients with long histories of RA and
particularly in refractory RA patients [59, 61].

2.2. Systemic Lupus Erythematosus. Systemic lupus erythe-
matosus (SLE) is a severe autoimmune disease characterized
by widespread tissue inflammation and damage to the
affected organs. The autoimmune-mediated inflammatory
responses in SLE are characterized by the production of
autoantibodies/antinuclear antibodies; formation of immune
complexes leading to autoantigen accumulation in various
tissues including the kidneys, joints, vasculature, and skin;
and secretion of proinflammatory cytokines that result in
activation of cells of both the innate and adaptive immune
systems [62, 63]. Pathogenesis of SLE is multifactorial and
is driven by genetics, hormonal factors, immune dysregula-
tion, and immune-mediated inflammatory injury [29, 64].

Current treatment strategies to manage SLE primarily
include antimalarials (hydroxychloroquine (HCQ), quina-
crine, corticosteroids and nonsteroidal anti-inflammatory
drugs (NSAIDs), immunosuppressive drug cyclosporine A
(CsA), azathioprine (AZA), methotrexate (MTX), tacroli-
mus (TAC), and cyclophosphamide (CTX)), mycophenolate
mofetil (MMF), and biological agents (rituximab (RTX),
belimumab) [24, 65, 66]. However, prolonged use of these
drugs leads to toxicity and adverse events, which may pro-
mote secondary infections or malignant tumours [24–29,
31–66]. Hence, in severe conditions, alternatives like plasma
exchange, high-dose immunoglobulin, or MSC treatment
are preferred [67]. Thus, there is an urgent need to develop
novel therapeutics for SLE with improved efficacy and
reduced toxicity.

MSCs have the potential to regulate the immune system
and control inflammation by inhibiting the activation of NF-
κB and JACK/STAT and Akt/GSK3β signalling pathways to
ameliorate SLE lesions [67]. Hence, MSCs have been exten-
sively explored for the treatment of SLE in experimental
animals [29, 68] and human patients [2, 8]. MSCs exert
immunosuppressive effects through proinflammatory cyto-
kine secretion and inhibiting lymphocyte activation and
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proliferation. Several studies on the immunomodulatory
effects of MSCs on preclinical models of SLE demonstrated
the beneficial effect [32, 69–73]. SLE was associated with
the activation and proliferation of autoreactive B cells and
certain subtypes of T cells [74]. Moreover, deficiency in
anti-inflammatory (Treg, Th2) and proinflammatory
(Th17, Th1) subsets is one of the crucial factors in the path-
ogenesis of SLE, leading to tissue inflammation, immune
dysfunction, and multiorgan failure [75]. Thus, to under-
stand the mechanism of MSCs as therapeutic for SLE, the
best-suited animal model is the Fas mutated MRL/lpr and
NZB/W F1 mice, which develop lupus-like syndrome very
similar to human SLE and have been widely used to study
the mechanism of MSC therapy [76–78]. Jang et al. investi-
gated the effect of hBM-MSCs on the pathogenesis of SLE
in female NZB/W mice. They observed that the hBM-
MSCs exhibited a protective effect associated with a reduc-
tion in autoantibodies, follicular T helper (Tfh) cells,
proteinuria, and humoral immune components [79]. A sub-
sequent report by Chang et al. showed that treatment of
NZB/W F1 mice with umbilical cord MSCs (hUMSCs)
inhibited the pathogenic and inflammatory immune
response of SLE and evidently delayed lupus autoimmunity
by modulating T cell differentiation and shifting Th1 to
Th2 polarization and reducing levels of proinflammatory
(TNF-α, IL-6, and IL-12) cytokines [29]. In addition, a study
conducted by Liu et al. demonstrated that upon xenogeneic
transplantation of human placenta-derived MSCs (hP-
MSCs) in MRL/lpr mice, a decrease in levels of anti-
dsDNA antibodies, NF-κB signalling pathway, expression
of TNF-α, ICAM-1, plasminogen activator inhibitor-1
(PAI-1), and proteinuria level was observed [80]. Similar
results were reported by Zhou et al., whereupon intravenous
injection of hBM-MSC in MRL/lpr mice reduced serum
levels of anti-dsDNA antibodies, proteinuria, and prolifera-
tion of T cells as observed. They also demonstrated a
decrease in Th17 cell proportion, IL-17 concentration, and
anti-dsDNA antibodies when human Early Embryonic
MSCs (hEE-MSCs) were injected in MRL/lpr mice [81].
Park et al. observed similar results with hA-MSC transplan-
tation in Roquinsan/san mice. They observed that hA-MSCs
markedly ameliorated autoimmunity in a murine model of
SLE by decreasing the anti-dsDNA-ICOS+CD44+ follicular
helper T cells, Th1, and Th17 and increasing the expression
of interleukin-10-producing regulatory B cells [82]. These
studies unequivocally demonstrated the immunoregulatory
effects of MSCs on T cell populations. Ma et al. also dem-
onstrated downregulation of B cell maturation and differ-
entiation in mice following administration of allogeneic
BM-MSCs in MRL/lpr mice [83].

Experimental studies [81–83] in genetically engineered
mouse models (MRL/lpr and NZB/W F1) have created com-
pelling evidence that MSC treatment can benefit and amelio-
rate SLE. These findings supported the exploration of MSC
therapy in humans. However, heterogeneous presentation
of lupus in humans presents a challenge, and mouse models
may not represent a complete spectrum of pathogenesis but
only a subset of changes observed in the human population
[84]. A comprehensive review of the safety, efficacy, and

signal pathways of stem cell therapy of SLE [68] suggested
an immense potential for clinical applications. Allogenic
MSC transplantation with peripheral blood MSCs in three
lupus nephritis patients resulted in decreased serum cre-
atinine levels. Leng et al. [85] assessed the efficacy of
autologous peripheral blood-derived MSCs in a 10-year
follow-up study in 24 SLE patients and showed a decline in
median proteinuria from 4gm/24 hr to zero levels in
follow-up studies after 5 years of transplantation. Liang
et al. [86] measured the efficacy of bone marrow MSCs in
15 refractory patients of SLE; 11/15 patients had decreased
anti-dsDNA antibodies below baseline during a 12-month
follow-up. The major bottleneck in the clinical application
of autologous MSC-based therapy in SLE patients was func-
tional abnormalities like cytoskeleton alteration, aberrant
cytokine production, impaired phenotype, proliferation,
and defective hemopoiesis [83, 87–89]. Due to this malfunc-
tioning, the use of allogenic MSC was preferred for trans-
plantation in SLE patients [30]. Clinical studies with
allogeneic MSCs derived from bone marrow and umbilical
cord suppressed autoimmunity and restored renal function
in patients by reestablishing a balance between Th1- and
Th2-related cytokines, decreasing IL-4 levels, and increasing
the numbers of Treg cells, TGF-β, and IFN-γ[30, 32, 88].

2.2.1. Emerging Concepts. Additionally, many new cutting-
edge concepts and technologies like exosomes and novel
polyherbal drug formulations are emerging that are expected
to revolutionize the use of MSC therapeutics in the near
future. The use of MSC-secreted exosomes is believed to
facilitate communication between cells and their microenvi-
ronments by transferring information via their cargo,
including the proteins, lipids, and RNAs, gaining momen-
tum as cell-free therapeutics [90]. These exosomes reduced
myocardial ischemia/reperfusion injury in mouse models
[90]. There are no studies known to our knowledge that have
examined this exosomes-based approach from MSCs to treat
RA and SLE in animal models or humans that may offer a
novel approach in general to treat tissue injury and promote
repair in autoimmune disorders [91]. Recently, Renganathan
et al. [92] developed a plant-derived ayurvedic polyherbal
formulation Dhanwantaram kashayam that regulated lipid
metabolism and scavenged oxidative radicals in diabetic rats.
This formulation enhanced the proliferation, mobilisation,
and homing of stem cells and ameliorated diabetic condi-
tions in experimental rats. These new approaches and
formulations need rapid clinical testing and may provide a
tangible MSC-based alternative for difficult-to-treat autoim-
mune diseases. MSC treatments have evoked great expecta-
tions, and their wide applicability to many more
autoimmune diseases like type 1 diabetes [93] and type 2
diabetes [94] is expected to bring a turning point in modern
medicine. Recently, Kotikalapudi et al. in an elegant report
published significant success of P-MSC therapy in the
control of experimental obesity-associated insulin resistance
(IR), regulation of underlying mechanisms, and ameliora-
tion of diabetes [94]. They demonstrated homing of intra-
muscularly injected fluorescent labelled P-MSCs to the
visceral region of the adipose tissue by in vivo imaging,
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activated PI3K-Akt signalling, regulated glucose homeosta-
sis, and insulin sensitivity in dysregulated adipocytes of
WNIN/GR-Ob (Ob-T2D) rats. These preclinical findings
suggest a potential of P-MSCs in the amelioration and
management of type 2 diabetes.

3. Conclusions

Stem cell/MSC transplantation treatment is emerging as a
rational and alternative therapeutic option for chronic auto-
immune disorders like RA, SLE, and type 1 and type 2
diabetes. Undoubtedly, preclinical models of RA and SLE
have played a significant role in deciphering underlying
immune mechanisms, pathologies, and evaluation of the
therapeutic potential of MSCs.

Collagen-induced arthritis models mimic human
disease, and the associated markers and events reasonably
predict human disease. Though there are convincing pre-
clinical studies on the therapeutic benefits of MSCs in RA,
their complete translation into human RA treatment is an
ongoing debate. Recent experimental and human studies
based on MSC-derived exosome research have yielded excit-
ing results. Further exploration of exosome products in the
resolution of RA and regeneration in autoimmune disorders
may provide new treatment options.

On the other hand, the pathogenesis of human SLE is
complex and varies from patient to patient and even at dif-
ferent times in the same patient. Animal models mimic
many of these events but cannot cover the full heterogeneity
of human lupus SLE. Nevertheless, animal models have
greatly benefited the understanding of complex immunolo-
gic and pathologic mechanisms. MSC treatments have been
well tolerated in human SLE patients. MSC therapeutics
have shown good responses, and findings have translated
reasonably to humans as well. Markers like serum autoanti-
bodies (anti-dsDNA, ANA), creatinine, proteinuria, reduc-
tion in nephritis and inflammation, and alleviation of SLE
lesions seem to well translate into human patients. Unfortu-
nately, large animal models of RA and SLE in canines, sheep,
pigs, etc., are lacking that could probably cover the spectrum
of pathophysiology better and increase the translation of
MSC therapeutics in these chronic ailments.

In summary, human clinical trial data in autoimmune dis-
orders have shown benefit with little or no serious adverse
events. There is a linear increase in stem cell human clinical
trial registration totalling 914 MSC trials for 14 diseases,
including autoimmune diseases, from 2004 to 2018 [10].
There are dozens of currently ongoing clinical trials at http://
www.clinicaltrials.gov. which is encouraging for MSC thera-
peutic development including for many autoimmune diseases.
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