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Abstract
Introduction: Several studies indicate the role of mesenchy-
mal stem cells (MSCs) as an important tool in regenerative 
medicine associated with injuries that affect the central ner-
vous system (CNS). The MSCs have the capacity to differenti-
ate into cells of the embryonic tissue, such as the mesoderm. 
So, these cells can be found in a variety of tissues. Also, the 
MSCs can release immunomodulatory and neurotrophic fac-
tors performance as inflammation mediators operating in 
injured tissue regeneration. Furthermore, they can differen-
tiate into neural-like cells in vitro. Thereby, because of the 
high immunomodulatory role of MSCs, this review sought to 
describe the main immunomodulatory mechanisms per-
formed by MSCs in CNS recovery after tissue injury or neuro-
degenerative diseases. Methods: PubMed and ScienceDi-
rect were searched between January 2011 to March 2021, 
and 43 articles met the criteria of the review. Results: This 
systematic review indicates that MSCs were used in vivo ex-
perimental multiple sclerosis, Parkinson’s disease, Alzhei-
mer’s disease, amyotrophic lateral sclerosis, ischemic stroke, 

and traumatic brain injury. The treatment MSCs were usually 
from human origin, derived from bone marrow, and admin-
istered intravenously. Conclusion: It was shown that MSCs, 
independent from origin or administration pathway, can re-
duce inflammation and help in the recovery and preserva-
tion of injured neural tissue. Thus, the use of MSCs repre-
sents a potential therapeutic option in the treatment of neu-
rological disorders mediated by inflammatory processes.

© 2022 The Author(s). 
Published by S. Karger AG, Basel

Introduction

The recovery of neurological functions and decline in 
neurodegeneration processes is based upon a population 
of somatic neural stem cells (NSCs) and progenitor cells 
able to differentiate in tissue-specific cell types [1–4]. 
Central nervous system (CNS)’s renewing occurs due to 
the presence in the adult brain of a population of NSCs 
with long-term self-renewal properties [5]. NSCs give rise 
to new neurons and glial cells throughout life. The in vitro 
neuroprotective effects of NSCs have been previously 
demonstrated. NSCs migrate to the injured areas acting 
as an anti-inflammatory and chaperone-like agent, inhib-
iting neuronal death [6]. However, NSCs are hard to iso-
late due to ethical (from fetal tissue) or methodological 
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(from pluripotent stem cells) problems. Mesenchymal 
stem cells (MSCs) are obtained easily in therapeutic quan-
tities. Similar to NSCs, these cells exert paracrine effects 
on damaged cells and microenvironments. Therefore, in 
recent years, they came to replace NSCs in regenerative 
medicine associated with lesions in the CNS [7]. Although 
MSCs are found in the CNS, they are commonly obtained 
from mesodermal tissue, as bone marrow and adipose tis-
sue, from extraembryonic tissues, as umbilical cord blood 
and placenta, and also from the dental pulp from ecto-
mesenchyme [8–10]. One of the in vitro characteristics of 
these cells is their capacity to differentiate into cells from 
the mesoderm (adipocytes, chondrocytes, osteoblasts, 
and myocytes) [11, 12]. Also, some authors showed MSC 
differentiation into the cells of the endodermal lineage 
(insulin-releasing cells and hepatocytes) [13] and the ec-
todermal lineage (neurons and astrocytes) [14].

MSCs come from different tissues, but they exhibit 
common characteristics when used in cell therapy. Sev-
eral years ago, we believed that MSCs might differentiate 
into neural cells. However, currently, we know that in vivo 
this does not occur. That is why MSCs were also denomi-
nated medicinal signaling cells[15]. Similar to NSCs/pre-
cursors, MSCs act through the production and release of 
immunomodulatory and neurotrophic factors [7, 11, 16, 
17]. In addition, MSCs can interact directly with immune 
system cells, like T and B lymphocytes, natural killer cells, 
macrophages, dendritic cells (DCs), neutrophils, and mast 
cells [11, 18, 19]. The cellular interactions and the release 
of several trophic factors make MSCs an important tool in 
clinical therapy. Moreover, their use in the treatment of 
CNS lesions or disease is possible because of their higher 
adaptive potential. Several clinical trials communicated 
on Clinictrials.gov, corroborating the properties of MSCs 
in the local and/or systemic anti-inflammatory actions.

The present review aims to describe if the immuno-
modulatory processes directed by MSCs may influence 
the neuroprotection and neuroregeneration of the CNS 
in diseases such as multiple sclerosis (MS), Parkinson’s 
disease (PA), Alzheimer’s disease (AD), and amyotrophic 
lateral sclerosis (ALS) and neural tissue injuries such as 
ischemic stroke (IS) and traumatic brain injury (TBI) in 
experimental models in vivo.

Materials and Methods

Search Strategy
A systematic search was conducted from January 2011 to 

March 2021 using two databases (PubMed and ScienceDirect) and 
according to the PRISMA Checklist. The keywords were identified 

using Medical Subject Headings (MESH), being the terms of stem 
cells (“Stem Cell, Mesenchymal” OR “Mesenchymal Stem Cell”), 
of intervention therapy (“Immunomodulation” OR “Immuno-
modulatory Therapy”) and cerebral (“Brain OR Brain injury” OR 
“Brain disease”). The studies were limited to articles whose objec-
tive was to investigate the action of MSCs on the brain of male/
female rats or mice with lesions/diseases in the CNS.

Inclusion/Exclusion Criteria
All articles included in this systematic review should show the 

following criteria: (1) adult male or female rats/mice with CNS in-
juries/diseases; (2) the treated group with MSCs from the dental 
pulp, bone marrow, adipose tissue, umbilical cord, placenta, or 
Wharton’s jelly; (3) control group with CNS lesions/diseases but 
without treatment with MSCs; (4) comparative studies, random-
ized controlled clinical trials, controlled clinical trials without ran-
domization, self-controlled clinical trials with results of neuronal 
regeneration and immunomodulation; (5) articles published in 
English.

The exclusion criteria included: (1) young or elderly rats/mice; 
(2) animals without injuries/diseases in the CNS; (3) treatment 
without the use of MSCs in the treated group; (4) use of MSCs from 
other tissues; (5) treatment on the animals in the control group; (6) 
observational, descriptive studies, reviews, case reports, abstracts 
presented at congresses and conferences, study protocols, person-
al opinions, and book chapters; (7) it did not provide any descrip-
tion of the protocol used in the application and obtaining the 
MSCs; (8) there were no immunomodulatory results; (9) it did not 
include a control group; (10) MSCs’ previous treatment in a con-
ditioned medium; (11) it did not have neuroinflammatory results.

The study selection process was performed independently by 
two authors. First, we have evaluated the title, the abstracts’ con-
tent, and the keywords for the eligible studies. Then, we analyzed 
the selected articles comparing the data collected to ensure the 
minimization of differences. If any remaining disagreement oc-
curred, a third reviewer joined the discussion to reach a consensus. 
Finally, after the selection, we began the extraction of the contents 
of the articles’ interests.

Data Collection and Extraction Process
The data extraction of each selected article was carried out by 

two examiners regarding the characteristics of the study (species, 
sex, age), disease (type of neurological disease and the method of 
inducing the disease), stem cells (lineage of MSCs, inoculation 
method, and time), primary and secondary results, and conclu-
sion. In addition, we extracted the name of the principal author, 
the year of publication, the title, and the objectives of the study.

Results

Study Selection
The criteria for study selection are presented in Figure 

1. A total of 968 studies were initially screened using the 
above search terms through the database search, PubMed 
and ScienceDirect. After authors checked titles and ab-
stracts, 103 reviews, 1 conference abstract, 1 article in 
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French, and 755 articles that were not related to the scope 
of this systematic review were removed. A total of 108 ar-
ticles were retrieved for full-text screening. After screen-
ing, the authors excluded 7 duplicated articles, 30 articles 
with MSCs serum conditioned, 4 articles with results in 
vitro, 7 articles that not used rat or mice species, 16 arti-
cles with treatment in neonatal or old mice/rats, and 1 
article with MSCs derived from the skin. In total, 43 ar-
ticles met the criteria and were used in the analyses, in-
cluding 19 articles on MS, 1 article on AD, 1 article on PA, 
1 article on ALS disease, 15 articles on IS, and 6 articles 
on TBI.

Neurodegenerative Diseases
Multiple Sclerosis
For MS, 19 articles met our inclusion criteria. Of the 

total number of selected articles, three were performed on 
rats (15.8%) and sixteen on mice (84.2%), with the female 
gender as the most prevalent (57.9%). Among the species 
of mice used, we have twelve articles that used the C57BL/6 
lineage (63.2%) and one article that used the SJL/J lineage 

(5.3%). The other mice articles used two species, one be-
ing C57BL/6 and BALB/C; Foxp3GFP and C57BL/6; 
C57BL/6 and NOD/Lt. Among the species of rats used, 
we have one article that used Wistar (5.3%), one article 
that used Lewis (5.3%), and one article that used Dark 
Agouti (5.3%). Regarding the type of MSCs used, we had 
seven articles with MSCs from the bone marrow (36.8%), 
five articles with MSCs from the adipose tissue (26.8%), 
three articles with MSCs from the placenta (15.8%), two 
articles with MSCs from embryonic cells (10.5%), and 
one article with MSCs from the dental pulp (5.3%) and 
Wharton’s Jelly (5.3%), respectively. 68.4% MSCs came 
from human tissue, 21.1% from mice, and 10.5% from 
rats. The main inoculation mechanism was intravenous 
(31.6%), and intraperitoneal (26.3%). The inoculation 
time after experimental autoimmune encephalomyelitis 
(EAE)-MS model was 1st day (20.8%), third day (20.8%), 
6th to 9th day (29.2%), 10th to 12th day (16.6%), 14th day 
(8.4%), and 30th day (4.2%) (online suppl. Table 1; see 
www.karger.com/doi/10.1159/000528036 for all online 
suppl. material).

Fig. 1. Flow diagram of studies included 
through the systematic review process.
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Parkinson’s Disease, Alzheimer’s Disease, and 
Amyotrophic Lateral Sclerosis
Regarding neurodegenerative, progressive, and no 

cure diseases that affect the CNS, we have PA, AD, and 
ALS. For each of these diseases, we found one article that 
met the criteria of the review. The PA article used adult 
female Sprague-Dawley rats with cannula injection of 
MSCs from the human term placenta on the fourth day 
after stereotaxic surgery for 6-OHDA injection. For the 
Alzheimer’s article, female and male transgenic rats were 
used, and MSCs derived from human term placenta were 
inoculated intravenously. The MSC inoculation time was 
not described in the selected article for AD. Finally, in the 
ALS article, male B6SJL-TgN transgenic mice were used 
in the disease model with injection into the cisterna lum-
baris of human MSCs. Also, the MSC inoculation time 
was not described in the selected article (online suppl. 
Table 2).

Neural Tissue Injury
Ischemic Stroke
Of the 15 selected IS studies, four studies were per-

formed in mice (26.6%) and eleven studies in rats (73.3%). 
Among the species, we have a study with Lewis’s rats 
(6.6%), three studies with Wistar rats (26.6%), five studies 
with Sprague-Dawley rats (41.7%); one study with Balb/C 
mice (6.6%), one study with C57BL/6 mice (6.6%), and 
one study with CD1 mice (6.6%). Regarding gender, thir-
teen studies used males (86.6%), and two studies used fe-
males (13.3%). In all studies, the performing ischemia 
method was through the middle cerebral artery occlusion 
(MCAO) model. The occlusion time varied from 45 min 
to 180 min. One study did the occlusion for 45 min (8.3%), 
one study did the occlusion for 75 min (8.3%), three stud-
ies did the occlusion for 60 min (25%), six studies per-
formed occlusion for 90 min (50%), and one study did the 
occlusion for 180 min (8.3%). Regarding the MSCs, one 
article obtained the dental pulp MSCs (6.6%), one article 
from the placenta (6.6%), two articles from the umbilical 
cord (13.3%), two articles on adipose tissue (13.3%), and 
nine articles on bone marrow (60%). The origin of MSCs 
was mainly human (71.4%), followed by rats (21.4%) and 
mice (7.1%). Finally, for the mechanism of MSCs inocula-
tion, we have one article with intracranial inoculation 
(6.6%), one article with intraperitoneal inoculation 
(6.6%), two articles with local inoculation (13.3%), and 
eleven articles with intravascular inoculation (71.4%). 
The inoculation time after MCAO was 30 min (6.6%), 6 
h (6.6%), 24 h (46.6%), 48 h (13.3%), 72 h (13.7%), 120 h 
(6.6%), and 168 h (6.6%) (online suppl. Table 3).

Traumatic Brain Lesion
In total, 6 articles on TBI met the criteria of our review. 

Among them, five were performed on rats (83.3%) and 
one on mice (16.7%), and all were performed on males. 
Among the species of rats are Sprague-Dawley (66.7%) 
and Wistar (16.7%), and C57BL/6 for mice (16.7%). Two 
types of neural injuries were selected, a TBI and an intra-
cerebral hemorrhage injury (ICH). In TBI, the injuries 
were caused by impacting and neurochemically. In the 
ICH, the lesions were performed through the injection of 
collagenase. Regarding MSCs, five articles obtained the 
bone marrow MSCs (83.3%) and one article on adipose 
tissue (16.7%). The origin of MSCs was of humans 
(66.7%), and rats (33.3%). Finally, for the mechanism of 
MSCs inoculation, we have five articles with intravascular 
inoculation (83.3%) and one article with intracranial in-
oculation (16.7%). The inoculation time after injury 
ranged from 2 h to 72 h, being these 2 h (33.3%), 24 h 
(16.7%), 36 h (16.7%), 48 h (33.3%), and 72 h (16.7%) 
(online suppl. Table 4).

Discussion

Immunomodulation in Neurodegenerative Diseases
Multiple Sclerosis
MS is a progressive autoimmune disease that affects 

the CNS. It is characterized by demyelination plaques in 
various neural regions, leading to the formation of gliosis 
(glial scars) [20]. Although the exact cause of MS is still 
uncertain, around 2.5 million people worldwide have MS 
[21]. This disease has a more elevated incidence in wom-
en, between 18 and 55 years [22, 23]. Animal models have 
become one of the primary tools for the study of MS, be-
ing induced in different ways, including by the emulsion 
with Myelin Oligodendrocyte Peptide (MOG 35-55), a 
complete Freund adjuvant, and Mycobacterium tubercu-
losis [24], or with Pertussis Toxin [25, 26].

The main alteration observed in MS is the inflamma-
tory demyelination of the CNS and the destruction of my-
elin leading to the formation of axonal lesions [27]. The 
axonal lesions occurred because of the development of 
autoantibodies that recognize the components of the my-
elin sheath, leading to microglial activation and macro-
phage recruitment [20]. The presence of autoantibodies 
occurs because of immunological dysregulation in innate 
and adaptive immune system mechanisms. The innate 
immune system responds by activating Toll-like recep-
tors, leading to lymphocyte activation and cytokine pro-
duction [27]. DCs and innate immune cells have the phe-
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notype activated through the expression of the cell sur-
face marker CD83. These cells migrate across the 
blood-brain barrier (BBB), differentiate in the CNS, and 
activate CD4+ T cells to differentiate into T-helper (Th) 
cells, where four phenotypes can be observed: Th1, Th2, 
Th17, and Treg [27–29]. The interaction between anti-
gen-presenting cells and T lymphocytes (TCD4+ and 
TCD8+) is essential for the initiation of the acquired im-
mune response since antigen-presenting cells secrete cy-
tokines that modulate CD4+ T cells. In the presence of 
interleukin-12 (IL-12) or IL-23, CD4+ T cells differenti-
ated, respectively, into Th1 helper cells or Th17 cells [29]. 
Consequently, the CD4+ Th cell phenotype is polarized 
leading to the expression of interleukins and secretion of 
specific cytokines [30, 31]. Cytokines produced by Th1 
and Th17 cells are pro-inflammatory cytokines like inter-
feron-gamma (IFN-γ), IL-2, and tumor necrosis factor-
alpha (TNF-α). The Th1 and Th17 are sending to the CNS 
lead to the activation of macrophages, astrocytes, and mi-
croglia, resulting in axonal loss and demyelination. In 
parallel, Th2 cells secrete anti-inflammatory cytokines re-
lated to the regulation or suppression of immune re-
sponses [30–32]. Regarding CD8+ T cells, they also pro-
duce pro-inflammatory mediators like lymphotoxin and 
IL-17, and their presence in the CNS and cerebrospinal 
fluid corresponds with acute axonal damage [29].

Many studies have been demonstrated the neuropro-
tective role of MSCs from different tissues in the treat-
ment of MS models, being the EAE the most common 
model. Clinically, it was observed in treatment with MSCs 
a delay in the onset of symptoms [26, 33], improvement 
in motor functions [20, 34], clinical signs [24–26, 35–42], 
and recovery/maintenance of body weight [37, 41, 42]. 
The most efficient clinical response was observed when 
MSCs were administered during the onset of disease rela-
tive to the disease peak and in untreated animals [24, 39, 
41, 43]. However, animals treated at the peak of the dis-
ease also showed an improvement in clinical conditions, 
especially about the stage of the disease evolution com-
pared to animals without treatment [44]. Parallel to the 
clinical findings, in the morphophysiological analysis, 
was observed a decrease in brain atrophy [20, 26, 34, 35], 
demyelination [20, 26, 33, 34, 39, 40, 42, 43, 45], and a 
smaller amount of inflammatory infiltrate [33–35, 37–
44].

These morphophysiological findings are correlated 
with the improvement of clinical signs. The MSCs display 
a neuroprotective effect, contributing to axonal preserva-
tion and remyelination, seen by the presence of a newly 
formed myelin sheath [35, 44, 46]. Furthermore, MSCs 

play a neuroregenerative role as they differentiate into 
other cell types and secrete neurotrophic factors like 
brain-derived neurotrophic factor, ciliary neurotrophic 
factor, and transforming growth factor-beta (TGF-b) of 
anti-inflammatory cytokine. These neurotrophic factors 
induce axonal growth and cell survival while reducing 
microgliosis and astrocytosis [7, 26, 44, 47, 48]. The secre-
tion of these neurotrophins also reduces inflammation 
and damage [7]. In addition to the morphophysiological 
findings and the release of neurotrophic factors, it was 
observed in animals treated an increase in myelin and 
neuronal growth markers. For myelin, there was in-
creased immunostaining of the marker 2′,3′-cyclic 
nucleotide-3′-phosphodiesterase (CNPase) [34], myelin 
basic protein (MBP) [24, 25, 44], the protein proteolipid 
1 (PLP1) [24], and Luxol Fast Blue (LFB) [48]. Regarding 
neuronal growth was observed an increase in the number 
of cells marked with a green fluorescent protein (GFP) 
[46] and growth-associated protein 43 (GAP-43) [44]. 
Furthermore, it was noted the presence of a higher total 
number of oligodendrocytes [45] and an increase in the 
expression of oligodendrocyte transcription factor 
(OLIG2) [48]. Finally, it was observed a reduction in mi-
croglial and astrocytic markers, such as ionized calcium-
binding adapter molecule-1 (Iba-1) and glial fibrillary 
acidic protein (GFAP), respectively [24, 33, 34, 44, 48]. 
The presence of increased immunostaining of myelin, 
neuronal growth, and oligodendrocytes markers strength-
ens the neuroregenerative role of MSCs. While the lower 
immunostaining of microglia and astrocyte corroborates 
with the decreases in the inflammatory process.

Demyelinating injury associated with axonal damage 
is a hallmark of MS [49, 50]. The lesion causes alteration 
in the structure and components of the axonal mem-
brane. The result is an impairment in the conduction of 
the nervous impulse or making them more excitable and 
active, originating the paroxysmal symptoms character-
istic of the disease [51]. The onset of demyelination is a 
cascade in which oligodendrocyte apoptotic events are 
added to the activation of an initial microglia-mediated 
immune response and an adaptive immune response 
driven by the infiltration of autoreactive T cells into the 
CNS parenchyma [50–55]. In parallel, activation of astro-
cytes during demyelination contributes to leukocyte re-
cruitment and survival in the CNS through the release of 
chemokines [56–58]. However, they can also attenuate 
inflammation and promote neuroprotection and injury 
repair through the release of brain-derived neurotrophic 
factor [59].
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During the administration of MSCs, it is observed a 
neuroregenerative process and an immunomodulatory 
role in altering the expression of cytokines, pro-, and an-
ti-inflammatory chemokines, and the presence of T-cell 
infiltrates in the CNS. Regarding pro-inflammatory cyto-
kines and chemokines, it was observed a reduction in 
IFN-γ [34, 37, 38, 41, 42, 44], TNF-α [34, 42, 44, 48], IL-
1β, IL-1, IL-6, IL-12, IL-17, and IL-18 [25, 33, 34, 37, 39, 
41, 42], and also chemokine ligand 2 (CCL2), CCL9, 
CXCL1, CXCL5 [39], expression of nuclear factor-κB 
(NF-κB) and cyclooxygenase-2 (COX-2) [24, 40, 44]. The 
decrease of these inflammatory signals reduces the im-
mune response of the individual. Conversely, studies 
have been describing an increase in anti-inflammatory 
cytokines like IL-4, IL-10 [20, 33, 37, 41, 44], and the TGF 
(TGF-β) [44, 46]. Moreover, concomitant with the reduc-
tion in pro-inflammatory cytokines and chemokines, 
there was a reduction in lymphocytic infiltrates, mainly 
CD4+ and CD8+ T cells, including Th1 and Th17 CD4+ 
subsets [20, 25, 33, 35, 37, 38, 41, 43].

Therefore, based on the articles included in this sys-
tematic review lead to MSCs, due to their neuroprotective 
and immunomodulatory properties, perform a beneficial 
modulatory role in the MS modifying the composition of 
cellular infiltrates and the release of regulatory factors of 
inflammation. Hence, the administration of MSCs con-
tributed to myelin repair, to the preservation and activa-
tion of oligodendrocytes at the demyelination site, to the 
reduction of gliosis formation, and to the prevention of 
axonal degeneration, contributing to the improvement of 
MS clinical signs.

Analyzing the origin of MSCs and the inoculation path 
individually, the studies showed that regardless of the 
type of MSCs and the path of inoculation, the animals 
showed improvement in clinical signs with a decrease in 
the inflammatory infiltrates, preservation of myelin, and 
a reduction in pro-inflammatory cytokines, especially 
when inoculation is performed early in the disease. Re-
garding anti-inflammatory cytokines, no increase was de-
scribed in articles that administered bone marrow-de-
rived MSCs. However, treatment with MSCs from ani-
mals with EAE showed reduced efficacy when compared 
to MSCs from naive animals [39].

Parkinson’s Disease
PD is a chronic progressive neurodegenerative disease 

of idiopathic etiology. It is described by the loss of neu-
rons in the substantia nigra, the main dopamine-produc-
ing region. Dopamine is the neurotransmitter that acts to 
control movement and motor coordination. Initially, the 

primary symptoms of the disease are motor alterations 
like tremor, rigid muscles, bradykinesia (slowed move-
ment), impaired posture and balance, loss of automatic 
movements, speech changes, and cognitive deficits. The 
cognitive deficits accelerate aging, enhancing the devel-
opment of dementia [60]. In more advanced stages, there 
may be a loss of serotonergic and noradrenergic neurons, 
implying the appearance of other non-motor symptoms 
such as sleep disturbance, cognitive dysfunction, and psy-
chiatric disorders [61, 62]. The progressive nature of PD 
implies a network of interactions between the vulnerabil-
ity of dopaminergic neuron loss, genetic predisposition, 
and environmental factors. Once the neurodegenerative 
process begins, a series of secondary events cause neuro-
chemical alterations [63, 64]. The neurodegeneration in 
PD may result from neuroinflammation mediated by mi-
croglial activation and increased pro-inflammatory cyto-
kines like IL-1β, IL-6, IFN-γ, and TNF [64, 65]. In addi-
tion, the activation of T lymphocytes, the CD23 receptor 
for IgE, COX-2, the induced nitric oxide synthase (iNOS), 
the complement receptor (CR3), and the increased ferri-
tin are involved in neuroinflammatory mechanisms, as-
sociated with the decrease of dopaminergic neurons [66]. 
There is evidence that several inflammatory cytokines, in-
cluding TNF, IL-6, and IL-1β, increase in the brain of pa-
tients with PD, in parallel with an increase in microglial 
activation in the substantia nigra. Such alterations are as-
sociated with the participation of iNOS, which may con-
tribute to the neurodegenerative process in PD. Given the 
alterations observed in patients with PD, studies have 
been using MSCs as a tool to reduce neuronal loss. Such 
studies with MSCs reported improvements in clinical 
symptoms and suppression of loss of dopaminergic neu-
rons, resulting in an improvement in cognitive capacities 
and motor memory. Furthermore, the factors secreted by 
MSCs induce neurogenesis, neuroprotection of neurons, 
modulation of microglial activation, inhibition of apop-
totic cells, inflammatory factors, and toxic molecules like 
α-synuclein. In addition, MSCs secrete TGF-β and IL-10, 
which are anti-inflammatory cytokines, providing a less 
neurotoxic environment [67]. Finally, MSCs secrete tro-
phic factors, like glia-derived neurotrophic factor and 
neurturin, which exert neuroprotective effects and in-
crease the survival of dopaminergic neurons [67]. There-
fore, it is observed that MSCs in PD contribute to immu-
nosuppression and neuroprotection against the loss of 
dopaminergic neurons, reducing the neurological chang-
es associated with the disease.
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Alzheimer’s Disease
AD is a progressive degenerative neurological disease. 

It is the most principal cause of dementia, a general term 
for memory loss and other cognitive capacities [68, 69]. 
Although the cause is idiopathic, it is estimated that mil-
lions of people around the world have AD (International 
AD). In Brazil, the disease has a prevalence of 7.1% in in-
dividuals over 65 years of age, with a higher epidemio-
logical prevalence in women [70, 71]. Usually, the first 
clinical sign is the difficulty in storing current informa-
tion, loss of visuospatial skills, language, and executive 
functions [72–74]. The cholinergic hypothesis assumes 
that degeneration of cholinergic neurons in the frontal 
cortex region, in the medial septum, and the nucleus ba-
salis of Meynert causes the appearance of dementia symp-
toms [75]. However, the hypothesis of hyperphosphory-
lation of the tau protein is responsible for the formation 
of neutrophil tangled. Physiologically the tau protein is 
important in neuronal homeostasis, being responsible for 
the aggregation of tubulin leading to the union of micro-
tubules with components of the cytoskeleton. Its hyper-
phosphorylation is related to decreased cytoskeletal sta-
bility, contributing to a series of events that result in cell 
death because of the formation of intraneuronal lesions 
and neurofibrillary tangled [74, 76, 77]. The brain of AD 
patients has two striking features: extracellular deposition 
of β-amyloid (βA) protein, with the formation of senile 
plaques, and intracellular deposition of neurofibrillary 
tangled of hyperphosphorylated tau protein [74, 78]. Se-
nile plaques are constituted of extracellular βA protein 
deposits that derive from the amyloid protein precursor. 
Amyloid protein precursor is part of the NOS, a family of 
proteins expressed by different cell types with unknown 
functions. But it has been suggested its functions are of 
neurotrophic and neuroprotective factors or the trans-
port of vesicles along the axon [78]. In turn, βA is secret-
ed by neuronal cells and can be found in the cerebrospinal 
fluid, blood, or deposited in cerebral capillaries, arteri-
oles, and venules. They can also accumulate in some re-
gions of the brain, like the cerebellum, striatum, and thal-
amus [79]. These molecular mechanisms associated with 
cellular alterations are responsible for the development of 
oxidative stress, culminating in the emergence of reactive 
oxygen species (ROS) and nitrogen species responsible 
for the production of apoptosis signals [72–74]. In turn, 
excess βA induces ROS production and depletion of en-
dogenous antioxidant agents, which causes neuronal 
damage and death. The inflammatory response associat-
ed with the presence of senile plaques is considered sec-
ondary to βA accumulation and may be involved in neu-

ronal damage and disease progression. Activation of glial 
cells (microglia and astrocytes) initiates an inflammatory 
response mediated by pro-inflammatory cytokines that 
activate the complement cascade with consequent cell 
damage [75, 78–80]. Overall, there is an increase in cyto-
kines and chemokines, like IL-1β, IL-6, IL-8, TNF-α, 
TGF-β, and macrophage inflammatory protein-1α (MIP-
1α) [81, 82]. Furthermore, the production of interleukins 
may be linked to the activation of microglia and astro-
cytes, leading to the secretion of pro-inflammatory mol-
ecules and amyloid. Hence, cytokines can affect the for-
mation of βA, increasing its deposition and aggregation 
[83, 84]. Currently, treatment for AD is palliative, but 
studies have been using MSCs transplantation. Their im-
munomodulatory potential leads to a reduction in the ex-
pression of pro-inflammatory chemokines and cytokines 
[85]. In animal models of AD, a reduction in the number 
of βA plaques was observed in the cortex and the hippo-
campus. This decrease in βA was because of the increase 
in the number of residents and activated microglia with 
phagocytic activity around the plaques. Therefore, MSC 
assists in restoring the immune system and the number 
of microglia with phagocytic properties and modulates 
the immune state toward βA removal [86].

Regarding inflammatory cytokines was observed a re-
duction in IL-1, TNF-α, and an increase in the anti-in-
flammatory cytokine IL-10 and TGF-β. Increased levels 
of TGF-β mediate anti-inflammatory effects and are as-
sociated with a reduction in plaque numbers and βA lev-
els. On the other hand, decreased levels of TGF-β are as-
sociated with increased neuronal death and microgliosis. 
In addition, TGF-β is believed to be associated with other 
immunosuppressive mechanisms involving regulatory T 
cells. Regulatory T cells play an immunosuppressive role. 
Thus, TGF-β released by AMSCs can induce microglia 
and regulatory T cells to exert a neuroprotective effect. 
Also, it was observed the increase in the levels of a 
β-degrading enzyme (IDE and metalloprotein MMP-9), 
an anti-inflammatory cytokine. Finally, clinically was ob-
served an improvement in the memory of the animals 
treated with MSCs through the water maze test. These 
factors suggest the treatment with MSCs modulates the 
immune system in the brain by controlling the amount of 
microglia and Aβ, reversing AD pathology and function-
al recovery through immunomodulatory effects [86].

Amyotrophic Lateral Sclerosis
ALS is a progressive neurodegenerative neuromuscu-

lar disease that results in the loss of upper motor neurons 
(neurons that project from the cortex to the brainstem 
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and spinal cord) and lowers motor neurons (neurons that 
project from the brainstem or spinal cord to the muscle). 
The motor and extra motor symptoms are the most pre-
dominant clinical symptoms like weakness and progres-
sive muscle atrophy. The symptoms progress to dyspha-
gia and result in paralysis and death from respiratory fail-
ure [87, 88]. The etiology of ALS is idiopathic, but 10% of 
cases have a family history [89]. Of all cases of familial 
ALS, 20% have mutations in the gene that encodes the 
protein superoxide dismutase 1 (SOD-1). The SOD-1 
gene mutation located on chromosome 21, important for 
neutralizing free radicals, promotes the activation of the 
oxidative cascade, producing oxidative stress and neuro-
nal death by the apoptosis pathway [90]. The other 80% 
mutations were described in genes like ALS4, ANG, 
VAPB, FIG420, TDP43, FUS, and UBQLN2. So, even in 
familial cases, there is significant genetic heterogeneity 
and the involvement of several etiopathogenic mecha-
nisms [89, 91]. After discovering the influence of these 
genes on familial ALS, a variety of hypotheses emerged to 
elucidate its pathophysiology. Among them the oxidative 
damage, accumulation of cell aggregates, mitochondrial 
dysfunction, failures in axonal transport, deficiency of 
trophic factors, inflammation, astroglial effects, and exci-
totoxicity promoted by glutamate [92–94]. The widely ac-
cepted hypothesis that triggers ALS is a failure in the 
reuptake of the synaptic cleft or a failure in the release of 
glutamate (the main excitatory neurotransmitter). The 
increased concentration of glutamate leads to the influx 
of calcium into the motor neuron, activating the signaling 
cascades that result in neuronal death because of excito-
toxicity [95]. However, there is evidence that the clinical 
symptoms of ALS can be by altering the expression of 
vascular endothelial growth factor (VEGF), purine/py-
rimidine endonuclease-DNA repairing enzyme (APEX), 
apolipoprotein E (Apo E), ciliary neurotrophic factor, 
and LIF.SOD [96]. The neuroinflammation process is a 
significant feature in the pathogenesis of ALS, in which it 
is possible to observe an increase in the systemic levels of 
inflammatory cytokines, such as TNF-α, IL-6, and IL-8 
[97]. Simultaneously, there is also the action of the TCD4+ 
lymphocyte, which produces and releases pro-inflamma-
tory cytokines like TNF-α and IL-17. The TCD8+ lym-
phocytes, also induce the motor neuron to apoptosis [98, 
99]. Microglial and DC activations are also involved in 
the production of inflammatory cytokines such as IL-1, 
IL-6, and TNF [97]. Microglia also release monocyte che-
moattractant protein-1 (MCP-1) responsible for mono-
cyte infiltration through the BBB that contributes to mo-
tor neuron death [97, 100]. As the disease progresses, pro-

inflammatory factors released into the environment 
promote astrocytic activation, leading to reduced neuro-
trophic factors (like TGF-B), downregulation of gluta-
mate transporters (GLT1/EAAT2), and release of neuro-
toxic factors [100, 101]. Thus, to seek effective treatment 
for ALS, transplantation of MSCs has been used because 
of their potential to differentiate into various types of cells 
and their ability to survive and migrate. In animal models 
of ALS, MSC transplantation promotes immunomodula-
tion by reducing the expression of cytokines and chemo-
kines. Regarding pro-inflammatory cytokines, a decrease 
in the expression of IL-6 and TNF-α was observed associ-
ated with an increase in the amount of M2 macrophages 
[91]. Contrary, it was observed an increase in anti-inflam-
matory cytokines, like IL-13, IL-10, and VEGF; exerting 
a neuroprotective action. A decrease in the expression of 
microglial cells was also observed, which consequently 
decreases the monocyte infiltrates [102]. These findings 
demonstrate the beneficial effect of the administration of 
MSCs in the treatment of ALS since they produce an anti-
inflammatory immunomodulatory effect, reducing in-
flammation and exerting neuroprotective effects.

Immunomodulation in Neural Tissue Injury
Ischemic Stroke
IS is one of the three types of strokes. It corresponds to 

the principal cause of morbidity and mortality worldwide 
[103]. The ischemia process occurs because of hypoperfu-
sion of blood in an organ or tissue, which can be caused 
by partial or total obstruction of a blood vessel. About 
80% of strokes are ischemic, in which blood clots block 
the blood flow in a cerebral artery [104, 105]. Animal 
models have been one of the main tools to study IS, with 
the model of MCAO the closest to human ISs. The MCAO 
model has been used in more than 40% of experiments 
with MSCs to analyze its neuroprotective effects [106].

The brain is extremely sensitive to reduced blood flow. 
Oxygen and glucose support are dependent on the blood 
flow rate, and the interruption of the supply severely af-
fects brain function, causing biochemical or molecular 
changes, cell dysfunction, and/or death [103, 107, 108]. 
After a few minutes of vascular occlusion, a sequence of 
progressive pathophysiological events begins (“ischemic 
cascade”) with the primary lesions. The mechanisms in-
volved in the cascade are excitotoxicity, apoptosis, activa-
tion of glial cells, the release of free radicals, loss of BBB 
integrity, infiltration of leukocytes in the brain parenchy-
ma, and production of inflammatory mediators [108–
110]. The neural cells, because of the absence of oxygen, 
start to perform anaerobic respiration, reducing the pro-
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duction of ATP. ATP reduction leads to dysfunction of 
ATP-dependent membrane transporters as the sodium 
and potassium (Na+/K+ ATPase) and calcium (Ca2+ 
ATPase) pumps. The accumulation of calcium in the cy-
toplasm activates hydrolase and cell depolarization, re-
sulting in the release and accumulation of glutamate in 
the pre- and postsynaptic clefts. This phenomenon is 
called excitotoxicity and leading to neuronal death [111]. 
The excess of glutamate promotes the release of COX-2, 
contributing to the activation of microglia, astrocytes, 
and leukocyte infiltration [112–114]. The excitotoxicity 
process also produces a large amount of lactic acid, lower-
ing the pH, and activating acid-sensitive ion channels, 
which are permeable to Ca2+. This process is called exci-
totoxicity [115]. Resulting from the ischemic cascade, tis-
sue damage and cell death are observed. Tissue damage is 
irreversible, and disorderly cell death is directly related to 
the inflammatory process in the core of the lesion [116]. 
Furthermore, hypoxia induces the expression of p53 and 
proapoptotic genes of the Blc-2 protein family, like Bax 
and Bid. The Bax presence in the mitochondria causes 
changes in the membrane, releasing cytochrome into the 
cytosol, activating caspase-9, and forming the apopto-
some complex. Subsequently, caspase-3 is activated via 
apoptotic protease activating factor (Apaf-1) correspond-
ing to the intrinsic pathway [116, 117]. The extrinsic 
pathway activation occurs from receptors of the tumor 
necrosis factor family, the most common being TBFR1 
and the first apoptotic signal. Consequently, caspase-8 
(initiator) and caspase-3 (effector) activated lead to the 
cleavage of the Bid, resulting in increased mitochondrial 
permeability and release of cytochrome C [117]. Another 
possible mechanism of apoptosis present in ischemia is 
via endoplasmic reticulum signaling triggered by cas-
pase-12. This pathway is activated by the accumulation of 
misfolded plasma reticulum proteins due to glucose defi-
ciency, alterations in homeostasis and calcium, and oxi-
dative stress [116, 117]. The inflammatory process begins 
and induces a secondary lesion, through the production 
of ROS and inflammatory mediators, like cytokines (IL-1, 
IL-6, TNF-a, and TGF-b), chemokines (MCP-1, CXCL12, 
and MMPs), and increased recruitment of mononuclear 
cells to the injury site [108, 109]. Once present, inflamma-
tion mediators activate microglia resulting in the release 
of more pro-inflammatory cytokines, and the induction 
of adhesion molecules (selectins, integrins) and immuno-
globulins [112, 113]. Adhesion molecules mediate leuko-
cyte adhesion to the vascular endothelium leading to their 
entry into the brain parenchyma [112, 113, 117]. With the 
increase in leukocytes, they release cytotoxic agents like 

MMPs, NO, and ROS, intensifying brain damage, cell 
death, and rupture of the extracellular matrix and the 
BBB [112].

Given the deleterious effects resulting from the ische-
mic process, several animal studies using the MCOA 
method have demonstrated the immunomodulatory 
properties of MSCs in IS [118, 119]. Regarding the pri-
mary lesion that occurs after the ischemic event, studies 
have reported a reduction in infarct volume [119–126] 
and brain water content [122, 127]. Among the mecha-
nisms involved in the “ischemic cascade,” such as apopto-
sis, activation of glial cells, and loss of the integrity of the 
BBB, such studies describe a modulation mediated by 
MSCs. Starting with apoptosis, the studies describe the 
prevention of neural apoptosis [126], observed by a re-
duction in TUNEL-positive cells and protein levels of c-
Jun N-terminal kinase (JNK) [123]; and a reduction in the 
number of degenerating neurons, structurally preserved 
[123, 128]. Neural preservation was observed because of 
higher expression levels of NeuN in MSCs groups [128]. 
Regarding glial activation, it observed lower labeling of 
GFAP+ and Iba-1+ cells [121, 123, 126, 128–132] indicat-
ing less infiltration of glial cells, like astrocytes and mi-
croglia in the ischemic core and boundary zone regions. 
Finally, regarding the loss of BBB integrity, the findings 
demonstrate an increase in vessel density values, the 
number of endoglin-positive cells, and the placental 
growth factor (PIGF) in the core and ischemic core and 
boundary zone region [130]. Furthermore, VEGF showed 
an increased expression mainly in macrophages [130]. 
These factors indicate a positive modulation of MSCs in 
the recovery of the BBB, as well as in the reduction of neu-
ral damage present in the ischemic event. In parallel with 
the histological improvement, it was observed a better 
motor and neurological functional recovery, assessed by 
the rotarod test, and a shorter learning period assessed by 
the Morris Water Maze test [119, 121, 123, 126, 131]. Fi-
nally, about the secondary lesion resulting from the in-
flammatory process, studies with the administration of 
MSCs have shown an effective immunomodulatory ef-
fect. This was noted by the reduction of pro-inflammato-
ry cytokines and the increase of anti-inflammatory cyto-
kines. Among the pro-inflammatory cytokines and che-
mokines, there was a reduction in IL-1 [122], IL-6 [132], 
IL-17 [122, 124], IL-23 [122], TNF-a [119–122, 133, 134], 
NF-kB [120], IL-1α [132], IL-1b [119–121, 127, 132], 
IFN-γ [127, 133], MCP-1 [119, 129, 132], IL-8, COX-2 
[129], C3 expression [124], CXCL1 [132], MIP-1α, and 
MIP-3α [132]. Regarding the anti-inflammatory cyto-
kines and chemokine has described an increase in IL-4, 
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IL-5 [129], IL-10 [122, 128, 131], TGF-β [119, 128, 130], 
CD200 [128], and gene 6 protein (TSG-6) [124]. Con-
comitant to these findings are also described inhibition of 
the CD8+ cell infiltrate [119], and a decrease in Th17 
[122]. Therefore, inoculation of MSCs suppresses im-
mune propagation, reduces structural damage, and pro-
motes functional improvement displaying a neuropro-
tective effect in the ischemic brain.

Traumatic Brain Lesion
TBI is the most common cause of death and disability 

in individuals under the age of 45 years in the world [135]. 
After the brain impact, a series of pathophysiological 
events begin for several days to weeks. Primary lesions 
after TBI are related to acceleration, rotation, and com-
pression forces, promoting structural damage to the 
brain, BBB, and blood supply. The result is an intracra-
nial hemorrhage, focal cerebral inflammation, and necro-
sis. Focal brain inflammation promotes secondary lesions 
as it exacerbates edema and promotes neuronal, glial, and 
endothelial cell death. The consequence is the presence of 
an inflammatory process, with edema formation, oxida-
tive stress, and iron accumulation [135, 136]. After brain 
injury, there is an increase in the metabolic rate, which 
results in a rapid depletion of ATP leading to dysregula-
tion in cellular ionic homeostasis. The low concentration 
of ATP promotes the activation of an anaerobic cascade 
causing an intracellular influx of sodium and calcium. 
The rise in the influx of sodium and calcium into the cell 
increases the influx of water, increasing cell volume (cy-
totoxic edema), and the uncontrolled depolarization of 
neurons, stimulating the release of excitatory neurotrans-
mitters like aspartate and glutamate into the environment 
extracellular [136–138]. The high amount of intracellular 
calcium also leads to activation of tissue damage path-
ways, called the arachidonic acid cascade, which culmi-
nates in the activation of phospholipase A2 producing 
ROS [135, 136, 139]. Therefore, excitotoxicity and oxida-
tive stress promote cells damage and apoptosis induction 
[138, 140–143]. However, apoptotic cell death represents 
only a percentage of neuronal deaths. The main mecha-
nism of cell death is necrosis, increasing the inflamma-
tory process [140]. Inflammation in a traumatic injury 
begins a few minutes after trauma and first activates mi-
croglial cells and astrocytes. Then, peripheral inflamma-
tory cells like neutrophils and monocytes are recruited. 
The increased integrated activity of cytokines, chemo-
kines, and vascular adhesion molecules amplifies the in-
flammatory response [144–146]. Among them, cytokines 
involved in this process are NF-kB, TNF, IL-1, IL-6, and 

IL-10 [144]. Chemokines, known for their role in leuko-
cyte communication and migration, like IL-8, are respon-
sible for the recruitment of neutrophils and have their 
expression increased after trauma [147]. The expression 
of COX is also notorious, like COX-1 and COX-2, re-
sponsible for the conversion of arachidonic acid into 
prostaglandins [148]. Adhesion molecules expressed by 
endothelial cells, such as intercellular adhesion mole-
cule-1 (ICAM-1) and vascular adhesion molecule-1 
(VCAM-1), are essential for leukocyte migration, involv-
ing their rolling and adhesion. Such molecules are up-
regulated in traumatized brains [137]. Thus, given the 
damage to TBI added to inflammatory events, the use of 
MSCs promotes a less cytotoxic environment, secreting 
trophic factors and immunomodulatory molecules that 
modulate the inflammatory response after TBI [149–
151]. In animal models of TBI and intracerebral hemor-
rhage (ICH), animals when treated with MSCs exhibit 
lower BBB permeability 24 h after infusion [152, 153]. 
The neurovascular protective action of MSCs is seen by 
the lower intensity of Evan’s blue and reduced expression 
of matrix metallopeptidase-9 (MMP-9) [152]. The BBB is 
an essential component of the CNS, formed by endothe-
lial cells, proteins, astrocytes, and pericytes, with the 
function of maintaining neural homeostasis [154, 155]. 
Because it is impermeable, it limits and regulates the ex-
change of substances between the blood and nervous tis-
sue [156]. However, the dysfunction in BBB leads to ion-
ic dysregulation, alteration of signaling homeostasis, the 
entry of immune cells and molecules into the CNS, mi-
croglial activation, neuronal dysfunction, and degenera-
tion [156, 157]. The inflammatory response in the CNS is 
characterized by the presence of edema formation, great-
er infiltration of mononuclear cells, astrocytic, and glial 
cell activation and increased expression of pro-inflamma-
tory cytokines and apoptotic markers [145, 158]. Treat-
ment with MSCs contributed to the reduction of edema, 
glial cells, and mono- and polymorphonuclear infiltrates, 
particularly of macrophages, neutrophils, and CD8+ T 
lymphocytes [132, 152, 153, 159–161]. Reduction of acti-
vated astrocytes was observed only 24 h after MSC infu-
sion [132]. Concerning astrocytic and glial markers, a 
lower expression of Iba-1 and GFAP was observed [152, 
160]; as well as a reduction in apoptotic cells, seen by the 
decreased labeling of TUNEL-positive cells [152, 159].

In parallel, the administration of MSCs promotes im-
munomodulation in the CNS, altering the expression of 
pro- and anti-inflammatory cytokines and chemokines. 
Between the pro-inflammatory cytokines, it was observed 
a reduction of IFN-γ [152, 153, 159], TNF-α [152, 153, 
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159, 160], IL-1β, IL- 1α, IL-6, and IL-17 [132, 152, 159]. 
Regarding pro-inflammatory chemokines was observed a 
reduction in MCP-1, MIP-2) [132, 159], and chemokine 
ligand 5 (CCL5), CXCL1 [159]. In both cases, a reduction 
was seen between 24 h and 72 h after TBI, along with a 
reduction in the expression of NF-kB [152, 159] and 
OX-2 [153]. Opposite to what was observed with pro-in-
flammatory cytokines and chemokines, the articles de-
scribed an increase in anti-inflammatory cytokines, in 
particular IL-10, TGF-β, and TNF-stimulated of TSG-6 
[152, 159, 160]. No differences in IL-4 cytokine levels 
were described between control and MSC-treated groups 
[159]. These findings demonstrate the beneficial effect of 
administering MSCs during TBI since they produce an 
anti-inflammatory immunomodulatory effect, reduce 
acute inflammation, regarded by the reduction of circu-
lating pro-inflammatory cytokines and chemokines with-
in the period of 24 h–72 h, and show a neuroprotective 
effect, reducing edema and damage to BBB. Regarding 
the origin of MSCs and inoculation path, the selected ar-
ticles preferably used MSCs from bone marrow with in-
travenous inoculation. One article inoculated cells locally 
using a Hamilton syringe and one article used MSCs from 
adipose tissue. However, no difference in results was ob-
served in the other studies.

Conclusion

The present review strengthens the field by systemati-
cally investigating the relation between the inoculation of 
MSCs in injuries and neurodegenerative diseases of CNS. 
These cells display an immunomodulatory effect, pro-
moting a decrease in the inflammatory process, better 
neural recovery, and preservation of brain tissue. Thus, 
we suggest the use of MSCs represents a potential thera-
peutic option for the treatment of neural diseases charac-
terized by the presence of neurodegeneration, inflamma-
tion, and structural damage in the neural tissue.
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